8 research outputs found

    Methods for Semantic Interoperability in AutomationML-based Engineering

    Get PDF
    Industrial engineering is an interdisciplinary activity that involves human experts from various technical backgrounds working with different engineering tools. In the era of digitization, the engineering process generates a vast amount of data. To store and exchange such data, dedicated international standards are developed, including the XML-based data format AutomationML (AML). While AML provides a harmonized syntax among engineering tools, the semantics of engineering data remains highly heterogeneous. More specifically, the AML models of the same domain or entity can vary dramatically among different tools that give rise to the so-called semantic interoperability problem. In practice, manual implementation is often required for the correct data interpretation, which is usually limited in reusability. Efforts have been made for tackling the semantic interoperability problem. One mainstream research direction has been focused on the semantic lifting of engineering data using Semantic Web technologies. However, current results in this field lack the study of building complex domain knowledge that requires a profound understanding of the domain and sufficient skills in ontology building. This thesis contributes to this research field in two aspects. First, machine learning algorithms are developed for deriving complex ontological concepts from engineering data. The induced concepts encode the relations between primitive ones and bridge the semantic gap between engineering tools. Second, to involve domain experts more tightly into the process of ontology building, this thesis proposes the AML concept model (ACM) for representing ontological concepts in a native AML syntax, i.e., providing an AML-frontend for the formal ontological semantics. ACM supports the bidirectional information flow between the user and the learner, based on which the interactive machine learning framework AMLLEARNER is developed. Another rapidly growing research field devotes to develop methods and systems for facilitating data access and exchange based on database theories and techniques. In particular, the so-called Query By Example (QBE) allows the user to construct queries using data examples. This thesis adopts the idea of QBE in AML-based engineering by introducing the AML Query Template (AQT). The design of AQT has been focused on a native AML syntax, which allows constructing queries with conventional AML tools. This thesis studies the theoretical foundation of AQT and presents algorithms for the automated generation of query programs. Comprehensive requirement analysis shows that the proposed approach can solve the problem of semantic interoperability in AutomationML-based engineering to a great extent

    Interpreting OWL Complex Classes in AutomationML based on Bidirectional Translation

    Full text link
    The World Wide Web Consortium (W3C) has published several recommendations for building and storing ontologies, including the most recent OWL 2 Web Ontology Language (OWL). These initiatives have been followed by practical implementations that popularize OWL in various domains. For example, OWL has been used for conceptual modeling in industrial engineering, and its reasoning facilities are used to provide a wealth of services, e.g. model diagnosis, automated code generation, and semantic integration. More specifically, recent studies have shown that OWL is well suited for harmonizing information of engineering tools stored as AutomationML (AML) files. However, OWL and its tools can be cumbersome for direct use by engineers such that an ontology expert is often required in practice. Although much attention has been paid in the literature to overcome this issue by transforming OWL ontologies from/to AML models automatically, dealing with OWL complex classes remains an open research question. In this paper, we introduce the AML concept models for representing OWL complex classes in AutomationML, and present algorithms for the bidirectional translation between OWL complex classes and their corresponding AML concept models. We show that this approach provides an efficient and intuitive interface for nonexperts to visualize, modify, and create OWL complex classes.Comment: As accepted to IEEE 24th International Conference on Emerging Technologies and Factory Automation (ETFA 2019

    From AutomationML to ROS: A model-driven approach for software engineering of industrial robotics using ontological reasoning

    No full text
    One of the major investment for applying industrial robots in production resides in the software development, which is an interdisciplinary and heterogeneous engineering process. This paper presents a novel model-driven approach that uses AutomationML as modeling framework and ontological reasoning as inference framework for constructing robotic application using Robot Operating System (ROS). We show how different robotic components can be classified and modeled with AutomationML, how these components can be composed together to a production system, and how the AutomationML models can be processed semantically by utilizing Semantic Web technologies and ontological reasoning. By applying model-to-text transformation techniques, executable ROS code can be generated from the models that foster fast prototyping and the reuse of robotic software

    ReApp - Wiederverwendbare Roboterapplikationen für flexible Roboteranlagen: Auswirkungen der Ergebnisse aus ReApp auf betriebliche Funktionen am Beispiel eines Anwendungsfalls in der Elektroindustrie

    No full text
    Ziel des vom Bundesministerium für Wirtschaft und Energie (BMWi) geförderten Projekts ReApp ist es, Werkzeuge und Modelle für die Entwicklung wiederverwendbarer Softwarebausteine (Apps) für Roboter zu schaffen. Diese verleihen beispielsweise Fähigkeiten für die Erkennung und das Greifen von Werkstücken bis hin zur automatisierten Ausführung von kompletten Prozessabläufen. Außerdem entsteht eine Entwicklungsumgebung, mit der diese Apps modelliert und auf den Robotersystemen auf einfache Weise integriert und eingerichtet werden können. Tests und Simulationen der Apps sind möglich, bevor das Robotersystem aufgebaut wird. Der Vorteil: Roboterbasierte Anwendungen lassen sich mit den Apps schneller und effizienter als bisher entwickeln. Dadurch wird der Einsatz von Automatisierung auch für kleine Stückzahlen rentabel. Dies hat Auswirkungen auf betriebliche Abläufe in mehrerlei Hinsicht: Zum einen ändert sich durch ReApp der Entwicklungsprozess von Automatisierungslösungen, was sich auf entwickelnde Berufe auswirkt, zum anderen können bisher rein manuell durchgeführte Tätigkeiten durch Automatisierung unterstützt oder gar ersetzt werden. Dies hat unmittelbare Konsequenzen für die Berufsgruppen, die bei der Produktion von Gütern eine Rolle spielen. Der Artikel beschreibt zunächst die grundlegenden Lösungsansätze des Projekts und analysiert anhand eines konkreten Anwendungsfalls die Auswirkungen auf die involvierten Berufsgruppen

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios
    corecore